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Abstract 

Let p be an odd prime number. In this paper we apply some group concepts to construct a 

Wreath Product group by using two permutation groups of prime degrees; we investigate the 
primitivity and regularity of the Wreath Product Group of degree 2p. The concepts of group 

actions was used, the work was carry out numerically by apply Computational Group Theory 
(GAP) which yield results. 
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I. INTRODUCTION 

 

Group theory plays great roles in every branch of mathematics where symmetry is studied.  

Every symmetrical object has to do with group. It is due to this association that groups arose in 
different area like Aeronautical Engineering, Crystallography, Biology, Chemistry, Sociology, 
etc. 

Recently, wreath product groups has been used to explore some useful characteristics of finite 
groups in connection with permutation designs and construction of lattices[1] as well as in the 

study of interconnection networks[2]  
 

1.1 PRELIMINARIES 

We present some basic concepts and results that will be applied further:  
1..2 Definition of some terms 

1.2.1 Stabilizer 
A kind of dual role is played by the set of elements in G which fix a specified point α. This is 
called the stabilizer of α in G and is denoted by     *   | 

     +   

 
1.2.2 Wreath Products 

The wreath product of C by D denoted by W=Cwr D is the semi-direct product of P by D, so 
that, },|),{( DdPfdfW   with multiplication in W defines as (     )(    )  
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((    
  
  

)  (    )) for all            d1,d2 D.. Henceforth, we write    instead of (  ) for 

elements of W. 

Note; We wish to henceforth notice that  
(a) If C and D are finite groups then a wreath product W determines by an action of D on a 

finite set is a finite group of order | |  | |  | |  
(b) P is normal subgroup of W and D is a subgroup of W. 
(c) The action of W on       is given by (    )   (  ( )   ) where     and    . 

 

1..2.3 Transitive Groups 

A group G acting on a set Ω is said to be transitive on Ω if it has one orbit and so αG =Ω for all 
α Ω. Equivalently, G is transitive iff or every pair of point α,δ Ω there exists   Ω such that 

  =β. A group which is not transitive is called intransitive. 
If |Ω|≥2, we say that the action of G on Ω is doubly transitive iff for any α1,α2 Ω such that α1≠α2 

and β1,β2 Ω such that β1,≠β2 there exist   G such that   
 
      

 
   . 

The group G is said to be k-transitive (or k-fold transitive) on Ω iff or any sequences α1,α2,…,αk 

such that      when      and β1,β2,…,βk such that βi≠βj when     of k element on Ω, there 

exists   G such that   
 
              

Thus, 
    *( ) (  ) (  ) (  ) (   ) (   )+ is transitive and 
   *( ) (  ) (  ) (  )(  )+ is intransitive. 

 
1.2.4   Imprimitivity 

A subset ∆ of Ω is said to be a set of imprimitivity for the action of G on Ω, if for each   G, 
either             and ∆ are disjoint. In particular, Ω itself, the 1-element subsets of Ω and 

the empty set are obviously sets of imprimitivity which are called trivial set of imprimitivity. 
Example              

The group of symmetry      *( ) (    ) (  )(  )(    ) (  ) (  ) (  )(  ) (  )(  )+, 
 of the square with vertices 1,2,3,4 is not primitive. For take    *( ) (  )+   reflection in the 
line joining vertices 1 and 3 = stabilizer of the point 1, and   *( ) (  ) (  ) = reflection in m 

the line joining vertices 2 and 4, (13)(24) = rotation in 1800,    *( ) (  ) (  ) (  )(  )}. 
Then H is a group greater than G1, but not equal to G. 

 
1.2.5 Primitive 
A permutation group G acting on a nonempty set Ω is called primitive if G acts transitively on Ω 

and G preserves no non trivial partition of Ω. Where non trivial partition means a partition that is 
not a partition into singleton set or partition into one set Ω. In other word, a group G is said to be 

primitive on a set Ω if the only sets of imprimitivity are trivial ones otherwise G is imprimitive 
on Ω, example the group 

   *( ) (  ) (  ) (  ) (   ) (   )+ is primitive. For each                  

 
 

II.                          Methodology 

We here present previous results that will be use as reference point in other to achieve our 
desired results. 
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2.0 Theorem  ([3]) 

Let G be a transitive permutation group of prime degree on Ω. Then G is primitive. 

Proof 

Now since G is transitive, it permutes the sets of imprimitivity bodily and all the sets have the 
same size. But    |  |,    being the sets of imprimitivity.  As |Ω| is prime we 

Have that either each |  |=1 or Ω is the set of imprimitivity. So G is primitive. 
 2.1   Theorem  ([3]) 

Let G be a non-trivial transitive permutation group on Ω. Then G is primitive iff  Gα, (α Ω) is a 
maximal subgroup of G or equivalently, G is imprimitivity if and only if there is a subgroup H of 

G properly lying between Gα, (α Ω) and G. 

Proof: 
Suppose G is imprimitive and ψ a non-trivial subset of imprimitivity of G. 
Let   *   |    +   

Clearly H is a subgroup of G and a proper subgroup of G because     and G is transitive. 
Now choose    . If   G then       , showing that       and so     . 

Hence    .    
Hence       . 

Since | |   , choose                   . By transitivity of G, there exist some     with 
                 . Now        so      and  h       Thus,      Hence     is 

not a maximal subgroup. 
Conversely, suppose that       for some subgroup H.  
Let       .  

Since     ,  | |   . 
Now If    , then H is transitive on Ω and hence   |    |  |     showing that H = G, a 
contradiction.   Hence,    ψ=Ω. Now we shall show that ψ is a subset of imprimitivity of G. 

Let    and       then         for some h,h' H.  

Hence         . So              . 

Thus     . Hence ψ is a non-trivial subset of imprimitivity. So G is imprimitive. 

 
2.2  Theorem   Fundamental Counting lemma or Orbit formula ([4]) 

Let G act on Ω and α Ω. If G is finite then |G| =  |Gα||αG|.   
Proof: 

We determine the length |αG| of the αG, we have that  if and only if αxy-1= α if and only if 
αxy Gα if and only if Gαx = Gαy. Thus there is one to one correspondence given by the mapping 

Gαx→αx  between the set of right cosets Gα and the G-orbit αG in Ω. Accordingly, as G is finite 
we have that  |G:Gα|=|αG| and so |G| = |Gα||αG|. 

 
2.3 Wreath Product ([5])    
The Wreath product of two permutation groups C and D denoted by W = C wr D  is the semi –

direct product of P and D so that  
)1.....(......................................................................}.........,|),{( DdPfdfW   

With multiplication in W defined as  

)))(,(())(( 21

1

1212211 dddffdfdf     for all Pff 21, and Ddd 21,  

Henceforth we write f d instead of (f,d) for elements of W  
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2.4         Theorem  ([5]) 

Let D act on P as )()( 1 dff d   where DdPf  , and   

Let W be group of all juxtaposed symbols f d with DdPf  ,  and multiplication given by 

))())(,( 21

1

1212211 dddffdfdf  .  Then W is a group called the semi-direct product of P by D 

with the defined action  

2.5 Theorem  ([5]) 
Let D act on P as   ( )   (    )                        . Let W be the group of all 
juxtaposed symbols                  and multiplication given by 

(     )(     )  (    
  
  

     )  Then W is a group called semi-direct product of P by D with the 

define action. 

2.6 Theorem   ([6]) 
Let G be a transitive abelian group. Then, G is regular. 

 Proof: 

Fix    . If     such that   G with                 
 
 (  )

   - (  )     (since 

G is abelian). As α, β are arbitrary, we get that Gα=1 since G is transitive, it is regular. 

2.0 Proposition   ([7]) 

A transitive group is regular if and only if its order and degree are equal 
 

Proof: 

Let G be a regular on Ω  of degree n since   |  |  | | and G is transitive Hence | |     

conversely, by transitivity of G it follows that,  |  |  | |   Hence         since | |    by 
assumption Hence G is semi-regular, but G is transitive so G is regular 
 

2.1 Proposition  ([7]) 

An intransitive group is irregular if and only if its order and degree are not equal 

 

Proof: 

Let G be an irregular group on Ω  of degree n, since |  |  | | and G is intransitive Hence 
| |     
Conversely by transitivity of G it follows that,  |  |  | |.  Hence      , since | |    by 
assumption. Hence G is Semi-regular, but G is intransitive so G is irregular. 

 
2,2 Proposition  ([8]) 

Let G be a group acting on a set Ω                Ω  

(i) The set of all orbits of G on Ω form a partition of Ω 

(ii) The stabilizer  α is a subgroup of G.  Moreover, if             
 
      

(iii)                                . 

Proof: 

Clearly   Ω is in the orbit      Now, it remains to show that orbits are distinct, or equal. Let   be a 

point in two different orbits          .  
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Then, there exists                                        
  
    

Now                                         *      + 

           = *    
  
     + 

                                              = *       + 

          =    

As when k runs over G,   
  
  also runs over G and vice versa.                                                                                                     

To show    is a subgroup, we must show it is closed un der multiplication and has inverses. If       , 

then by the first axiom for actions   (  )  (  )       

So,        Clearly, if                            . Hence,    is a Subgroup.    

Now suppose that                .  Then ,  

         
                           So    

 
      

Finally          
  
     

  
         

 

2.7 Theorem  (Orbit-Stabilizer theorem )    Let G be a group acting on a set  Ω. Then, for 
all   Ω   |  ||  |  | | 
Proof:  By proposition 2.2 (iii), the points    of the    are in bijection with the cosets  

         |  |  |    |, Finally by Langrange’s theorem|  ||  |  |  ||    |  | | 
 

Definition 2.1  ([8]) 

A transitive action of G on Ω is called regular if       for all   Ω .  Equivalently,     fixes 
no point in Ω  

 

2.0 Remark ([4])  

A group G acting on a set   is said to be transitive on   if it has only one orbit, and so    
             . Equivalently, G is transitive if for every pair of points       there exists     
such that        A group which is not transitive is called intransitive. A group G acting 

transitively on a set   is said to act regularly if      for each     (equivalently, only the 
identity fixes any point). The previous theorem then has the following immediate corollary 

 

Corollary 2.0  ([8])  
Let G act transitively of degree n on a set  Ω.  Then  

(i) All the stabilizers   ,  for   Ω are conjugate 

(ii) The index |G:   |                  Ω 
(iii)The action is regular  if and only if |G|= n 

 

Proof:  Since the action is transitive, by Proposition 2.2 (ii), all the    are conjugates. The 

second two parts follow from the Orbit- Stabilizer and Lagrange’s theorem. 
Note that, from the first part of the above corollary a transitive group G is regular if there exists 
  Ω                
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III.  RESULTS OF OUR CONSTRUCTION AND DISCUSIONS 

 

3.1 Introduction 

In this section, we shall be discussing in detail the primitivity and regularity of the Wreath 
product groups of degrees 2p, and it will be presented in three sections. In Section 3.1 is the 

introduction, while Section 3.2, we will present the primitivity and  regualrity of the Wreath 
product group of degree 5p and while section 3.3 Primitivity and Regularity of Wreath Product 
Group of degree 2p (p=3) 

 

3.2  Primitivity and regularity of Wreath Product Group of Degree 2p. 

The following are the main results on the constructed Wreath Product group of degree 2p. 
(Henceforward p                  ) 
Proposition 3.0 

Let G be the Wreath Products of permutation groups of degree 2p (p an odd prime). Then G is                 
(i)  irregular. (ii) Imprimitive  

Proof  

Let C and D be the permutation groups of degrees 2 and p respectively. Hence,  
|G| =     or |G| =     

Case 1:   |G| =       and |  |  | |      
Now from (Orbit-stabilizer) theorem 2.7  |  ||  |  | | 

                                      |  |  
| |

|  |
 

                                                           
   

  
       

                                  = p 
Since        Clearly the stabilizer |  |     Therefore, by Theorem 2.6 and Proposition 2.0                    

( A transitive group is Regular if and only if its order and degree are equal) also by corollary 2.0 ,  
Hence W is irregular. Thus the Wreath Product group is not regular. also since the order and the 
degree of W are not equal, as clearly stated by Proposition 2.0 and Proposition 2.1  W is not 

regular and by Theorem 2.0 (Every transitive group of prime degree is primitive) and Theorem 

2.1 for any group H as subgroup of G  hence G < GH   it implies that W is imprimitive, as the 

degree of W is 2p.   

 

Case 2:  |G| =       and |  |  | |      
From (orbit-stabilizer) theorem 2.7   |  ||  |  | | 

        |  |  
| |

|  |
 

                                                                              = 
   

  
 

           
 
Since        Clearly the stabilizer |  |     Therefore, by Theorem 2.6 and Proposition 2.0                   

( A transitive group is Regular if and only if its order is equal to its degree) also by corollary 2.0 ,  



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  
P-ISSN 2695-1908, Vol. 9 No. 2 2023 www.iiardjournals.org 

 

  IIARD – International Institute of Academic Research and Development Page 27 

Hence W is irregular. Thus the Wreath Product group is not regular. since the order and the 
degree of W are not equal, as clearly stated by Proposition 2.0 and Proposition 2.1  W is not 

regular and by Theorem 2.0 (Every transitive group of prime degree is primitive) and Theorem 

2.1 for any group H as subgroup of G  hence G < GH    it implies that W is imprimitive, as the 

degree of W is 2p.   
 

3.3 Primitivity and Regularity of Wreath Product Group of degree 2p (p=3) 

Let C be a group of degree 3 and D a group of degree 2 acting on the set   *     +           
  *    + Respectively Let      *     + with           

Then the wreath product         of degree = 6 is of order | |  |  | | |          

We wish to show that   is   (i) Imprimitive and   (ii) Irregular 

 
(i) We follow the procedure as described in theorem 2.4 to obtain the elements of the 

Wreath Product group   in cyclic form as:  

W = [(),(4,5,6),(4,6,5),(1,2,3),(1,2,3)(4,5,6),(1,2,3)(4,6,5),(1,3,2),(1,3,2)(4,5,6), (1,3,2)(4,6,5), 

(1,4)(2,5)(3,6),(1,4,2,5,3,6),(1,4,3,6,2,5), (1,5,2,6,3,4), (1,5,3,4,2,6), (1,5)(2,6)(3,4), 
(1,6,3,5,2,4), (1,6)(2,4)(3,5), (1,6,2,4,3,5) ] 

Now  | |           *           + is the set of points of   . It follows by Remark 2.0 that   is 
transitive as the orbit           . Also the stabilizer of the point 1 in   is given by 

  ( ) = [ (4,5,6) ]  which is obviously non-identity  proper subgroup of   . We readily see from 

the subgroups of   that the group ( ) has  subgroups                                                               

  ,(()),([(1,4)(2,5)(3,6)]),([(1,5)(2,6)(3,4)]),([(1,6)(2,4)(3,5)]),([(4,5,6)]),([(1,2,3)]), 
([(1,2,3)(4,5,6]),([(1,3,2)(4,5,6)]),([(1,4)(2,5)(3,6),(1,2,3)(4,5,6)]),([(1,5)(2,6)(3,4), 
(1,2,3)(4,5,6)]),([(1,6)(2,4)(3,5),(1,2,3)(4,5,6)]),([(1,4)(2,5)(3,6),(1,3,2)(4,5,6)]), 

([(4,5,6),(1,2,3)]), ([(4,5,6),(1,2,3),(1,4)(2,5)(3,6)])]  Which is properly lying between 
 ( )                  ( )      hence,    is imprimitive by theorem 2.1 and theorem 2.0. 

Thus the Wreath Product of W is imprimitive,   

(ii) | |          and since the degree of   is 6 then | |  |  |    by Using 

(orbit-stabilizer) theorem 3.4.5   
|  ||  |  | | 

                 |  |  
| |

|  |
 

                                                               |  |  
  

 
 

                                                                                          = 3 

Clearly the stabilizer |  |     Therefore, by Theorem 2.6 and Proposition 2.0   ( A transitive 

group is Regular if and only if its order and degree are equal) also by corollary 2.0 ,  Hence W is 

irregular. Thus the Wreath Product group is not regular.   
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III.            Validation of Results  

 

4.1 Primitivity and Regularity of Wreath Product Groups of degree 2p ( p = 3 ) 

 The Group Algorithm and programming  version 4.11.1 version 
 

APPENDIX  A  [9] 

GAP 4.11.1 of 2021-03-02 
 │  GAP  │   https://www.gap-system.org 

 └──────    
gap> # WreathProduct of degree 2p 

gap> C :=Group((1,2,3)); 
Group([ (1,2,3) ]) 
gap> D :=Group((4,5)); 

Group([ (4,5) ]) 
gap> W :=WreathProduct (C,D); 

Group([ (1,2,3), (4,5,6), (1,4)(2,5)(3,6) ]) 
gap> Order(W); 
18 

gap> Elements(W); 
[(),(4,5,6),(4,6,5),(1,2,3),(1,2,3)(4,5,6),(1,2,3)(4,6,5),(1,3,2),(1,3,2)(4,5,6),(1,3,2)(4,6,5), 

(1,4)(2,5)(3,6),(1,4,2,5,3,6),(1,4,3,6,2,5),(1,5,2,6,3,4),(1,5,3,4,2,6),(1,5)(2,6)(3,4),(1,6,3,5,2,4), 
(1,6)(2,4)(3,5), (1,6,2,4,3,5)] 
 

gap> AllSubgroups(W); 
H=[(()),([(1,4)(2,5)(3,6)]),([(1,5)(2,6)(3,4)]),([(1,6)(2,4)(3,5)]),([(4,5,6)]),([(1,2,3)]),([(1,2,3)(4,5,

6)]),([(1,3,2)(4,5,6)]),([(1,4)(2,5)(3,6),(1,2,3)(4,5,6)]),([(1,5)(2,6)(3,4),(1,2,3)(4,5,6)],([(1,6)(2,4)(
3,5),(1,2,3)(4,5,6)]),([(1,4)(2,5)(3,6),(1,3,2)(4,5,6)],([(4,5,6),(1,2,3)]),([(4,5,6),(1,2,3),(1,4)(2,5)(3
,6)])] 

gap> IsTransitive(W); 
true 

gap> IsRegular(W); 
false 
gap> IsPrimitive(W); 

false 
gap> IsNilpotent(W); 

false 
gap> IsSimple(W); 
false 

gap> W1 :=Stabilizer(W,1); 
Group([ (4,5,6) ]) 

gap> W2 :=Stabilizer(W,2); 
Group([ (4,5,6) ]) 
gap> W3 :=Stabilizer(W,3); 



International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  
P-ISSN 2695-1908, Vol. 9 No. 2 2023 www.iiardjournals.org 

 

  IIARD – International Institute of Academic Research and Development Page 29 

Group([ (4,5,6) ]) 
gap> W4 :=Stabilizer(W,4); 

Group(()) 
gap> W5 :=Stabilizer(W,5); 
Group(()) 

gap> W6 :=Stabilizer(W,6); 
Group(()) 

gap> 
   
4,2  Conclusion and Recommendation  

 
This Study showed that the Wreath Product group of degrees 2p where p is an odd prime number 

is   (i) Imprimitive and (ii) Irregular  
 
Other work can extend these findings by considering further research on one or a combination of 

two or more of other theoretic properties such as simplicity, nilpotency, solubility etc of same 
algebraic structure. 
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